- Multiplikationen
- ⇡ Reichweitenüberschneidung.
Lexikon der Economics. 2013.
Lexikon der Economics. 2013.
Schnelle Fourier-Transformation — Eine schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei solchen Algorithmen handelt es sich… … Deutsch Wikipedia
Horner-Schema — Das Horner Schema (nach William George Horner) ist ein Umformungsverfahren für Polynome, um die Berechnung von Funktionswerten zu erleichtern. Es kann genutzt werden, um die Polynomdivision sowie die Berechnung von Nullstellen und Ableitungen zu… … Deutsch Wikipedia
Fast-Fourier-Transformation — Die schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei dem Algorithmus handelt es sich um ein… … Deutsch Wikipedia
Fast Fourier-Transformation — Die schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei dem Algorithmus handelt es sich um ein… … Deutsch Wikipedia
Schnelle Fouriertransformation — Die schnelle Fourier Transformation (englisch fast Fourier transform, daher meist FFT abgekürzt) ist ein Algorithmus zur effizienten Berechnung der Werte einer diskreten Fourier Transformation (DFT). Bei dem Algorithmus handelt es sich um ein… … Deutsch Wikipedia
Binäre Exponentiation — Die binäre Exponentiation (auch Square Multiply genannt) ist eine effiziente Methode zur Berechnung von natürlichen Potenzen, also Ausdrücken der Form xk mit einer natürlichen Zahl k. Dieser Algorithmus wurde bereits um ca. 200 v. Chr. in Indien… … Deutsch Wikipedia
Strassen-Algorithmus — Der Strassen Algorithmus (benannt nach dem deutschen Mathematiker Volker Strassen) ist ein Algorithmus aus der Linearen Algebra und wird zur Matrizenmultiplikation verwendet. Der Strassen Algorithmus realisiert die Matrizenmultiplikation… … Deutsch Wikipedia
Binäre modulo-Exponentiation — Die binäre Exponentiation ist eine effiziente Methode zur Berechnung von natürlichen Potenzen, also Ausdrücken der Form xk mit einer natürlichen Zahl k. Dieser Algorithmus wurde bereits um ca. 200 v. Chr. in Indien entdeckt und ist in einem Werk… … Deutsch Wikipedia
ModPower — Die binäre Exponentiation ist eine effiziente Methode zur Berechnung von natürlichen Potenzen, also Ausdrücken der Form xk mit einer natürlichen Zahl k. Dieser Algorithmus wurde bereits um ca. 200 v. Chr. in Indien entdeckt und ist in einem Werk… … Deutsch Wikipedia
Schnelle Exponentation — Die binäre Exponentiation ist eine effiziente Methode zur Berechnung von natürlichen Potenzen, also Ausdrücken der Form xk mit einer natürlichen Zahl k. Dieser Algorithmus wurde bereits um ca. 200 v. Chr. in Indien entdeckt und ist in einem Werk… … Deutsch Wikipedia